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Fig. 1. Rendering comparison between path tracing, spatio-temporal reservoir resampling (ReSTIR) [Bitterli et al. 2020] and our stratified histogram sampling
method at the 4th rendering frame. By locally ordering candidates for the resampling estimator, our method enables the selection of candidates with stratified
properties, efficiently reducing rendering error. This error reduction is also visible in the RelMSE error map on the right side. The closeup view shows in detail
the noise reduction and the relative difference in RelMSE compared to ReSTIR.

Monte Carlo (MC) rendering is a widely used approach for photorealistic
image synthesis, yet real-time applications often limit sampling to one path
per pixel, resulting in high noise levels. To mitigate this, resampled impor-
tance sampling (RIS) has shown promise by approximating ideal sample
distributions through a discrete set of candidates, avoiding the complexity of
neural models or data-intensive structures. However, current RIS techniques
often rely on random sampling, which fails to maximize the potential of
the candidate pool. We propose a two step approach that first organizes
samples candidates into local histograms and then sample the histogram
using Quasi Monte Carlo and antithetic patterns. This can be done with
minimal overhead and allows to reduce error in rendering to increase visual
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quality. Additionally, we show how it can be combined with blue noise error
distribution to perceptually reduce noise artifacts. Our approach yields a
higher-quality resampling estimator with enhanced noise reduction, demon-
strating significant improvements in real-time rendering tasks.
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1 Introduction
Monte Carlo (MC) rendering has become a cornerstone of modern
real-time rendering techniques, particularly with the recent ad-
vancements in hardware acceleration for ray tracing. This method
is central to achieving photorealistic images by simulating light
transport through random sampling of light paths. However, even
with cutting-edge hardware, real-time applications often limit the
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number of samples to a single path per pixel, which results in noisy
images with reduced perceptual quality due to the inherently sto-
chastic nature of the sampling process.

To mitigate this noise, noise reduction techniques have emerged
to improve the quality of MC and make it viable. Some simple
methods such as better importance sampling [Litalien et al. 2024],
low-discrepancy sequences [Christensen et al. 2018], antithetic sam-
pling [Wang et al. 2023], control variates [Salaün et al. 2022b; Nicolet
et al. 2023], and screen space error distribution [Heitz and Belcour
2019], are already compatible with the computational constraints
of real-time path tracing. More advanced approaches such as path
guiding, require complex data structures [Vévoda et al. 2018] or
neural models [Müller et al. 2019], which introduce non-negligible
computational overhead and complexity, limiting their use.

Recently, a novel approach based on resampled importance sam-
pling (RIS) [Talbot 2005] has garnered attention. This method offers
mathematically sound improvements in sampling distribution with-
out the complexity of learning models or intricate data structures.
By employing a large population of samples to approximate the
ideal sampling distribution and then resampling this approxima-
tion, this approach has demonstrated significant improvements in
rendering tasks like direct lighting [Bitterli et al. 2020], global il-
lumination [Ouyang et al. 2021; Lin et al. 2022], and volumetric
rendering [Lin et al. 2021]. It is particularly effective when com-
bined with spatial and temporal reuse of samples, showing promise
in real-time settings.

Despite the work of Ciklabakkal et al. [2022] aiming to combine
RIS with QMC sequences, limited research has been done to combine
variance reduction techniques with RIS. This work seeks to address
this gap by demonstrating how to effectively combine simple noise
reduction techniques with RIS at minimal computational cost. Key
to our work is the idea that locally organizing RIS candidates prior
to sample selection allows us to introduce different noise reduc-
tion techniques that increase the effectiveness of the algorithm. In
summary, the main contributions of this work are:

• The construction of a local approximation of the distribution
function for candidate selection.

• A method for selecting stratified candidate for a resampling
estimator in both spatial and temporal domains.

• The integration of this error-reduction sampling technique
with perceptual error distribution to further enhance render-
ing quality with minimal overhead.

2 Related work
Quasi-Monte Carlo sampling. Quasi-Monte Carlo (QMC) meth-

ods aim to improve the efficiency of Monte Carlo integration by
using well-distributed, deterministic sample sets instead of ran-
dom, independently distributed samples. The primary objective
of QMC sampling is to distribute samples as uniformly as possi-
ble over the integration domain, enabling more effective and accu-
rate function sampling. Over the years, numerous techniques have
been proposed for constructing sample sets with varying degrees
of quality and simplicity. Among the most notable are stratified
sampling, which divides the sampling domain into non-overlapping
regions with exactly one sample per region; Sobol sequences [Sobol’

1967; Doignies et al. 2024], known for their progressive and low-
discrepancy construction; PMJ02 sequences [Christensen et al. 2018],
which achieve multiple levels of stratification simultaneously; and
Rank-1 lattices [Dammertz and Keller 2006], which follow a shifted
grid pattern to maintain uniformity. Each of these methods im-
proves sample distribution, leading to reduced variance and lower
integration error compared to purely random sampling.
In Monte Carlo rendering, QMC sampling has become a corner-

stone technique due to its ability to reduce noise and enhance image
quality [Keller 1996; Singh et al. 2019]. Moreover, QMC methods
often exhibit improved convergence rates compared to random sam-
pling, achieving equal image quality with a lower sample count.
This accelerates rendering performance for the same noise level
while maintaining visual accuracy.

Antithetic Sampling. Antithetic sampling represents an alterna-
tive strategy for distributing multiple samples that, unlike quasi-
Monte Carlo (QMC) methods focused on uniformity, aims to reduce
error by balancing sample values [Kroese et al. 2013, Chapter 9.2].
The core idea is to select sample points that, when averaged, com-
pensate each other to approximate the true function average more
effectively. For example, a high-value sample is paired with a cor-
responding low-value sample to achieve error cancellation. While
this approach can be challenging for Monte Carlo rendering—where
function values are generally unknown in advance and poorly cho-
sen pairs may increase error—it proves particularly useful for mono-
tonic functions. In these cases, sampling can be guided by expected
function behavior, enabling more controlled and effective error re-
duction. Antithetic sampling has shown promise in applications
where sampling symmetry or compensation is feasible, comple-
menting other variance reduction techniques [Subr et al. 2014]. The
most common application is its use for inverse rendering applica-
tion and gradient estimation [Zhang et al. 2021; Wang et al. 2023;
Belhe et al. 2024]. Instead, our work emphasizes the application of
antithetic sampling in traditional rendering.

Reservoir re-sampling. Building on the foundational concepts of
importance sampling, Resampled Importance Sampling (RIS), in-
troduced by Talbot [2005], tackles the challenge of dealing with
desired sampling distributions that are too complex for analytical
construction. RIS achieves this by approximating the target distri-
bution through a set of candidate samples. These candidates are
drawn from a simpler, sub-optimal distribution. The key idea lies in
resampling a single sample from this candidate pool, where the prob-
ability of selection is proportional to the desired weight in the target
distribution. This approach eliminates the need to compute the en-
tire target distribution, requiring only evaluations at specific points.
By repeating this resampling process, RIS builds a multiple-sample
estimator that converges to the desired distribution.

Expanding upon RIS, Bitterli et al. [2020] presented Spatiotempo-
ral Reservoir Resampling (ReSTIR). This technique employs a stream
of candidate light samples, managed through Weighted Reservoir
Sampling, to probabilistically resample candidates based on their
anticipated contribution. To enhance efficiency, ReSTIR integrates
candidates reservoir from both spatial and temporal neighboring
pixels. This strategy allows for an unbiased rendering process with-
out the need for complex data structures. Building on ReSTIR, recent
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works like ReSTIR GI [Ouyang et al. 2021] and ReSTIR PT [Lin et al.
2022] extend the algorithm to handle more general light transport
scenarios. Advancements have been made to generalize ReSTIR
to more complex rendering scenarios, such as subsurface scatter-
ing [Werner et al. 2024] and advanced camera modeling [Zhang
et al. 2024]. ReSTIR has also shown potential for inverse rendering
applications [Chang et al. 2023].
Ciklabakkal et al. [2022] introduced a stratified resampling

method for ReSTIR that can produce blue noise error distribution
in screen space for low-dimensional paths. Key to their method
is a single-pass bidirectional CDF sampling approach that aims to
stratify samples in primal space along a Hilbert curve. In contrast,
our method scales to high-dimensional paths by stratifying samples
in the 1D space of luminances, where CDF sampling simplifies to a
sorting algorithm. Hence our method both stratifies samples in a
more meaningful space and avoids a bidirectional setup by leverag-
ing simultaneous access to all candidates. Additionally, Ciklabakkal
et al. [2022] do not apply stratification during the initial candidate
sampling and the resampling phase. Although it looks like both
methods share similarities, they address different problem spaces.

3 Preliminaries

3.1 Spatio-temporal reservoir re-sampling
Resampled importance sampling. Resampled Importance Sam-

pling (RIS) is a method designed to generate a sample proportionally
to a target distribution 𝑞, from which direct sampling is not pos-
sible. Instead, we generate a set of 𝑘 random candidates from an
initial distribution 𝑝 (Fig. 2 in red). For each candidate 𝑥𝑖 , a weight
𝑤𝑖 =

𝑞 (𝑥𝑖 )
𝑝 (𝑥𝑖 ) is computed. A sample is then selected from the set by

drawing according to the discrete probability distribution defined
as 𝑃 (𝑖) = 𝑤𝑖∑𝑘

𝑗=1 𝑤𝑗

. This step is illustrated by the resampling arrow
in Fig. 2. Using this two-step sampling procedure, the generated
sample probability density function (PDF) approaches 𝑞 as 𝑘 → ∞.

This approach can be used in an unbiased Monte Carlo estimator,
as demonstrated by Talbot [2005], to estimate an integral using the
following estimator:

∫
Ω
𝑓 (𝑥)𝑑𝑥 ≈ 𝐼𝑅𝐼𝑆 =

𝑓 (𝑥𝑖 )
𝑞(𝑥𝑖 )

· ©­« 1𝑘
𝑘∑︁
𝑗=1

𝑤 𝑗
ª®¬ (1)

where 𝑥𝑖 is the selected sample from the 𝑘 candidates, and the sum
of the weights normalizes the estimator.

Spatio-temporal resampling. In the context of rendering, the RIS
estimator can be effectively used to reduce noise by generating sam-
ples that better approximate the ideal light distribution in a scene.
However, generating 𝑘 candidates per pixel can be computation-
ally expensive. To address this, spatio-temporal candidate reuse is
employed, where sample candidates are shared across neighbor-
ing pixels and across frames in temporal sequences. This reuse of
candidates amortizes the cost of candidate generation, making RIS
particularly efficient in real-time applications.

This approach produces higher-quality output compared to sim-
ple Monte Carlo estimator, where only one light path per pixel is
typically sampled without regard for neighboring pixel or frame

Candidate 
sample pool

Random 
Candidate 
Selection Final sample

ReSTIR
Resampling

Sorting 
Candidates

Antithetic 
Candidate 
Selection

Final 
sampleResampling

Ours

Fig. 2. Visualization of the difference between a classical RIS estimator and
our proposed stratified histogram sampling. Starting from a same pool of
candidates, RIS selects uniformly a random subset of candidates, used for
a resampling step where a single candidate is finally selected. This second
sampling is done with importance sampling. Instead, our method starts
by sorting the candidates based on their output value before selecting the
candidates for re-sampling. This selection is done using antithetic sampling,
selecting samples with symmetric properties. Finally the resampling step is
done similarly to RIS estimator.

information. By leveraging multiple candidate samples and reusing
them efficiently, RIS with spatio-temporal reuse better approximates
the ideal distribution for each pixel, resulting in lower noise and
higher overall image quality, particularly in complex lighting sce-
narios such as indirect illumination.

3.2 Histogram sampling
Histogram sampling was introduced by Heitz and Belcour [2019] to
provide an efficient method for sampling complex, high-dimensional
functions by reformulating the integration problem into a simpler,
one-dimensional space. Instead of directly sampling the original
function 𝑓 (𝑥), histogram sampling estimates the distribution of func-
tion values and then samples from this distribution using inverse
cumulative distribution function (CDF) sampling. This approach
abstracts away the complexities and variations of the original func-
tion, leveraging the properties of a 1D monotonic function with
limited variation, which is highly compatible with Quasi-Monte
Carlo (QMC) methods known for their variance reduction capabili-
ties.

The histogram estimation process begins by generating random
samples from the original function’s sampling space to approximate
the probability distribution of its output values. As the number of
samples increases, the accuracy of the histogram improves. Sam-
pling from this histogram is straightforward: the inverse CDF of the
histogram is constructed, allowing direct sampling of the function
values. The integral of the function over its domain can thus be
transformed as:

∫
Ω
𝑓 (𝑥) 𝑑𝑥 =

∫
R
𝐻 (𝑦) 𝑑𝑦, 𝐻 (𝑦) = 𝑝 (𝑦) · 𝑦, (2)
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Fig. 3. Visualization of our 4 spp antithetic sequence. The initial sample
(red dot) is sampled from the range [0, 0.25], and the 3 other samples (blue
dot) are constructed by mirroring around 0.25, 0.5, and both successively.

where 𝐻 (𝑦) represents the histogram of function values 𝑓 (𝑥). As
demonstrated by Heitz and Belcour [2019], the inverse CDF sam-
pling of a histogram is mathematically equivalent to sampling the
index of a sorted list, enabling histogram sampling by simply sorting
the samples and selecting from them uniformly.

Despite its benefits, histogram sampling has a notable drawback:
constructing an accurate histogram requires a large number of sam-
ples, which can often be more costly than using all the samples
directly in a standard Monte Carlo estimator. However, when the
cost of histogram estimation can be reduced, the method provides
substantial benefits. Heitz and Belcour [2019] demonstrated its use
for blue-noise error distributions to improve perceptual quality.
Meanwhile, we use it to enable stratified and antithetic sampling
for resampling-based rendering, directly reducing rendering error.

4 Correlated histogram sampling for resampling
candidates selection

In a ReSTIR-based rendering setup, each frame involves generating
new random samples for every pixel. In the standard method, 𝐾
candidates are randomly selected from neighboring pixels close to
the target pixel for the resampling step (see Fig. 2 top). In contrast,
we propose a more structured approach by constructing a histogram
of all candidates to guide a more effective candidate selection pro-
cess. By choosing candidates with improved distribution properties,
the selected 𝐾 candidates will better approximate the ideal target
distribution, leading to a reduction in the final estimation error.
Figure 2 (bottom) shows the main difference between a classical
ReSTIR estimator and our method with the sorting of the candidates
and the use of an antithetic sampling.

This approach leverages the core assumption from ReSTIR: neigh-
boring pixels in an image evaluate similar integration functions,
making candidate reuse across pixels not only viable but beneficial.
By drawing from the candidate pool of adjacent pixels, we exploit
spatial coherence, resulting in better sample diversity and smoother
integration.

4.1 Local histogram construction
The key enhancement in our pipeline compared to the standard
ReSTIR approach is the explicit construction of a local histogram of
candidates. Constructing a histogram for every pixel at each frame
would be computationally prohibitive. Instead, we build a shared
histogram for a fixed-size group of pixels, referred to as a block, that
are tilled over the image without overlap. Typical block sizes range
from 8× 8 to 32× 32 pixels, balancing computational efficiency with
better histogram estimation.

Rather than constructing the explicit histogram and its inverse
cumulative distribution function (CDF) separately, we directly con-
struct the inverse CDF, which can be sampled efficiently. As dis-
cussed in Section 3.2, this process is equivalent to sorting the candi-
dates based on their function value, specifically the total luminance
estimated from the path associated with each candidate. This order-
ing process is visualized in Fig. 2, where the initial pool of random
candidates is sorted into a 1D list. The sorted candidates form a
direct representation of the inverse CDF of the block. By leveraging
this structure, our method significantly improves the quality of se-
lected candidates for resampling, directly contributing to reduced
variance in the final rendered image.

4.2 Stratified histogram sampling
We improve candidate selection in ReSTIR by applying stratified
sampling across frames and within each frame. Since ReSTIR is
a temporal method, coordinating sampling over multiple frames
helps reduce noise and improve stability. Our approach uses a single
Sobol sequence per pixel that will be used across frames to guide
both candidate selection from a sorted list and the final resampling
step. Such a sampling sequence benefits from stratified properties
by construction.

At each frame, a single sample from the Sobol sequence provides
values for the two sampling steps. The first dimension is used to
select multiple candidates from the ordered list. This simultaneous
sampling is obtained by an antithetic sampling strategy constructed
from a single pseudo-random number. The second dimension deter-
mines the final candidate for resampling, chosen proportionally to its
weight 𝑞 (Section 3.1). Unlike the classical ReSTIR approach, which
uses streaming reservoir updates, our method directly resamples
using inverse CDF sampling with a single pseudo-random number,
simplifying the process. Contrary to Ciklabakkal et al. [2022] which
required a space filling curve (in sample space) to select stratified
candidates, we obtain stratified samples directly from the candidate’s
output values, making this approach independent of the rendering
method.
The antithetic sampling method that we used generates a sym-

metric and stratified pattern following the construction shown in
Fig. 3. This construction is adapted for the sampling of 4 elements
but could be extended to other power of two number of candidates.
Such patterns are effective for reducing error in monotonic func-
tions as symmetric samples balance high and low values, helping to
compensate for variations.
By combining stratification in both sampling steps, our method

improves the distribution of candidates contributing to the second
term of Eq. (1), reducing estimation error and enhancing rendering
quality.

4.3 Spatial masking
To maximize local similarity within a neighborhood of pixels and
construct high-quality candidate histograms, we apply spatial fil-
tering based on G-buffer information, ensuring that only similar
pixels contribute to the same histogram. For each block of pixels, a
clustering process groups pixels with similar G-buffer attributes. In
our implementation, object ID was used as the primary guide for
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Fig. 4. Visualization of spatial masking on candidate sorted list. Two over-
lapping objects in the same block lead to the construction of separate sorted
list of candidates to prevent path reuse from different objects.

ReSTIR
9 frames (87.3ms)

Ours
8 frames (80.8ms)

3.9e-3 (1x) 1.6e-3 (0.42x)

3

0.0

2.7e-3 (1x) 1.9e-4 (0.07x) 6.5e-3 (1x) 3.4e-3 (0.53x)

Reference ReSTIR Ours Reference ReSTIR Ours

Fig. 5. Comparison with temporal accumulation. Equal time compari-
son of ourmethod (8-frame temporal accumulation) against ReSTIR (9-frame
temporal accumulation) using frame accumulation instead of temporal can-
didate sampling. RelMSE error maps and close-ups highlight significant
error reduction across the image using our method in slightly less time.
RelMSE values and relative differences to ReSTIR are provided for the entire
image and the close-ups.

clustering; however, other attributes such as surface normals, depth,
or material properties could yield similar improvements. Fig. 4 pro-
vides a visualization of a sorting step for a block containing two
different objects. During resampling, each pixel samples candidates
exclusively from the sorted list of candidates of its cluster (same ob-
ject ID in our case). This spatial filtering enhances the coherence of
candidate selection, reducing noise and improving resampling accu-
racy. Similar rejection-based approaches using surface normals and
depth have been previously explored in the context of importance
sampling, as demonstrated by Bitterli et al. [2020]. This localized
filtering technique ensures that sampling distributions better match
local scene characteristics, improving the overall rendering quality.

5 Experiments

5.1 Implementation setup
Rendering Setup. We implemented our ReSTIR-based method

in the Falcor renderer [Kallweit et al. 2022], leveraging its pro-
vided path-tracing implementation and following ReSTIR PT al-
gorithm [Lin et al. 2022]. Our resampling strategy uses the total
path luminance, including visibility terms, as the target density.
Each rendering frame consists of three primary passes: (1) candi-
date generation, where random paths are generated and rendered
for each pixel; (2) inverse CDF construction, where local candidate

ReSTIR Ours

4.7e-2 (1x) 3.1e-2 (0.66x)

14

0.0

Full image

2.3e-2 (1x) 8.8e-3 (0.38x)

3.0e-2 (1x) 1.5e-2 (0.51x)

Reference ReSTIR Ours

Fig. 6. Comparison using temporal reservoir. RelMSE error map and
visual comparison (equal samples) of our method and ReSTIR on the sec-
ond rendering frame and a static image. Error maps, close-up and relative
difference highlight the reduced error achieved by our method.

sorting is performed to build the histogram structure; and (3) the re-
sampling and final rendering step. All experiments were conducted
on an NVIDIA RTX 3090 using DirectX acceleration. Rendering
timing where also evaluated on Intel ARC A770.

Implementation Details. We utilized a bitonic sorting algorithm to
leverage GPU acceleration for ordering candidates. In the conducted
experiments, a block size of 16 × 16 pixels was used. Our spatial
masking using object ID allows for as many cluster as objects on
the block. For resampling, four candidates per pixel were selected
using our antithetic strategy. As proposed by Bitterli et al. [2020],
we limited the reservoir accumulation by capping the maximum
number of sample accumulations. This maximum was set to 20
candidates, and an exponential moving average (EMA) was applied
once this threshold was exceeded.

Sampling. For sampling, we employed a perceptually optimized
XOR Sobol sequence, as described by Heitz et al. [2019], to drive
our multi-frame Sobol sampler. Each pixel was assigned a unique
Sobol sequence, ensuring a well-distributed sampling pattern across
frames. This strategy improves both temporal stability and error
distribution.

Evaluation. To evaluate the performance of our method, we com-
pared it to the baseline ReSTIR algorithm using two primary metrics:
Mean Squared Error (MSE), Relative Mean Squared Error (RelMSE).
The MSE is defined as MSE = 1

𝑁

∑𝑁
𝑖=1 (𝑓𝑖 − E[𝑓 ])2, where 𝑓𝑖 rep-

resents the rendered pixel value and E[𝑓 ] is the reference value.
The RelMSE normalizes this by the reference value, computed as
RelMSE = 1

𝑁

∑𝑁
𝑖=1

(𝑓𝑖−E[ 𝑓 ] )2
E[ 𝑓 ]+0.0001 , making it suitable for scenes with

varying luminance.
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Fig. 7. Evolution with increased temporal candidates.We compare the
rendering quality of our method (last row) compared to ReSTIR (first row)
when accumulating 1, 2, 4, and 8 frames for a fixed viewpoint. For each
number of accumulation, we consistently obtain a lower MSE than ReSTIR
(computed for each crop). For the first frame of accumulation (frames 1
and 2), we also benefit from perceptual error distribution which reduce the
perception of noise.

Overhead. Our method introduces a minor overhead. The mem-
ory footprint is minimal, requiring only storage for luminance (one
float per reservoir) and G-buffer information (one integer per reser-
voir) for sorting purposes. The time overhead, primarily due to the
ordering of candidates during histogram construction, remains rela-
tively small, adding only 3 to 10% to the overall rendering time in
our experiments, depending solely on the block size.

5.2 Results
Figures 5 and 10 presents a rendering comparison without temporal
candidate reuse at equal time. In this setup, each frame indepen-
dently employs spatial candidate sampling without relying on reser-
voirs from previous frames. Instead, frames are directly accumulated
to produce a multi-sample rendering. In this context, our method
demonstrates superior performance, achieving both significant error
reduction and an improved perceptual error distribution, resulting
in smoother, visually pleasing images. Unlike temporal candidate
resampling, where the reuse of samples across frames can diminish
perceptual error properties, explicit accumulation better preserves
these properties, enhancing the overall visual quality. This approach
allows us to fully leverage the benefits of our stratified histogram
sampling, which not only reduces per-pixel error but also distributes
error across the image, further improving perceptual quality.
We compared our method to ReSTIR with temporal resampling

across five scenes and various frame counts (2, 4, 8, 16, and 32), as

Table 1. This table shows the rendering time per frame for two scenes as de-
scribed in Fig. 9 with various block sizes. The values in parentheses indicate
the percentage of rendering time allocated to the additional requirements
of our method compared to ReSTIR. Based on these results, the best balance
between computation time and quality is achieved with 16 × 16 blocks.

Render time in ms (Overhead in % of the rendering)
Scene block 4 × 4 block 8 × 8 block 16 × 16 block 32 × 32

RTX 3090
Living-room 15.1 (2.1%) 14.9 (1.1%) 15.8 (3.4%) 19.0 (7.9%)
Staircase 9.9 (3.4%) 9.7 (1.8%) 10.4 (6.3%) 13.6 (13.7%)
ARC A770
Living-room 41.3 (2.5%) 42.0 (2.0%) 44.9 (2.5%) 55.8 (3.0%)
Staircase 36.5 (2.3%) 36.7 (2.0%) 40.5(2.5%) 51.2 (3.4%)

shown in Figs. 1, 6 and 12. For each scene, we present visual compar-
isons, RelMSE error maps, and close-up views to highlight detailed
improvements. All scenes are illuminated using environment maps,
except the Veach-Ajar scene, which features only indirect illumina-
tion. In Fig. 6, the second frame demonstrates the benefits of our
method before the candidate accumulation limit is reached. In this
scenario, our approach significantly reduces noise and achieves a
visibly lower RelMSE compared to ReSTIR. Moreover, thanks to
the perceptually optimized Sobol sequence from Heitz et al. [2019],
our method provides a more favorable perceptual error distribution.
In the Station Demerzel scene (Fig. 12-top), most of the remaining
error manifests as color noise rather than luminance noise, likely
due to the use of a single shading ray during final rendering leading
to a remaining high relative error while having smoother rendering
in the close ups. In the Kitchen scene (Fig. 12-middle), improve-
ments are observed in smooth regions but are limited by the use of
a single shading ray at the final stage. Most of the error comes from
shadowed ray, and very little noise remains in the other pixels. This
error reduction is visible in the error map; however, the average
value over the entire image does not show significant reduction due
to the error being dominated by some high-error regions for both
methods. Finally, in the Veach-Ajar scene (Fig. 12-bottom), rendered
under indirect illumination, our method enhances rendering quality
by leveraging antithetic sampling to improve candidate selection.
This reduces the impact of outliers, further improving the overall
visual fidelity.

The full image error evolution with increasing frame count,
shown in Fig. 8, provides further evidence of our method’s effec-
tiveness. This figure illustrates the RelMSE progression across four
scenes: Sea House, Station Demerzel, and Sky Home and Veach Ajar.
In all cases, our method consistently outperforms ReSTIR at every
frame count. The plots exhibit a typical convergence pattern, with
the error stabilizing after a few frames as the resampling process
reaches its candidate accumulation limit. This behavior limits fur-
ther reductions in error, but in all four scenes, our method achieves
a consistently lower equilibrium error than ReSTIR. Our method
remains limited by color noise—that a single shading ray cannot
reduce—and the high variance region(s) that can dominate full im-
age error. Still, these results demonstrate that our approach leads to
lower error and improved overall rendering quality.
In Fig. 7, we present the evolution of rendering quality in an

animated sequence, comparing our method with ReSTIR. The main
comparison highlights the visual results at the 16th rendered frame.
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Fig. 8. Evolution of RelMSEwith the frame rendered. This figure shows
the evolution of the relative mean squared error (RelMSE) with respect to
the number of rendered frames. Rendering without temporal accumulation,
but with temporal candidate resampling, leads to improved results over
time. Error stagnation occurs when the maximum number of samples is
reached before applying exponential moving average (EMA). Our method
consistently lowers error per frame, converging to a more accurate equilib-
rium state.

Close-up views illustrate the progression across different frames,
showcasing consistent error reduction over time. For each close-
up region, we include MSE comparisons for both methods and the
relative error difference between them. Our approach consistently
outperforms ReSTIR across all frames, achieving lower error and
smoother results. Notably, in the early frames, some high-frequency
error patterns are visible in our method due to the use of the per-
ceptually optimized Sobol sequence from Heitz et al. [2019]. This
sequence enhances perceptual error distribution, contributing to
the overall improvement in rendering quality.
We also analyzed the impact of block size on candidate sorting,

resampling, error reduction, and rendering performance. This eval-
uation, detailed in Fig. 9, compares renderings with block sizes
ranging from 4 × 4 to 32 × 32 across two indoor scenes. For each
block size, two close-up insets are shown, depicting the RelMSE
and relative error relative to the 4 × 4 block. Additionally, Table 1
provides the render times per frame for each block size, highlight-
ing the sorting overhead compared to standard ReSTIR. The results
indicate that smaller block sizes yield faster render times but result
in higher error and more noticeable low-frequency artifacts. In con-
trast, larger block sizes significantly increase computation time due
to sorting overhead, with diminishing quality gains and some degra-
dation at 32 × 32 compared to 16 × 16. The slight increase in error
for the largest block size can be explained by the reduced similarity
between the distant pixels of a large block. This reduced similarity
affects path reuse, leading to a slight degradation in stratification
quality as path throughput change when reuse in different pixel and
increased error. Based on these findings, a block size of 16×16 offers

Table 2. Ablation of histogram sampling strategies with RelMSE and
PrelMSE averaged over 4 Scenes (Station-Demerzel, Sea-House, Sun Temple
and Veach Ajar).

Method RelMSE pRelMSE
Uncorrelated candidates (ReSTIR) 0.049 0.132
Heitz et al. 2019a (4 samples per frame) 0.034 0.100
Random offset stratification 0.043 0.103
Random offset + temporal blue noise 0.034 0.095
Antithetic + temporal blue noise (Ours) 0.034 0.095

the best trade-off, achieving lower error with a modest performance
overhead of approximately 3% to 7%, depending on the scene.
Figure 11 presents a comparison between our method and Re-

STIR using multiple temporal reservoirs. This is accomplished by
sampling temporal reservoirs similarly to spatial candidates—first
by constructing a histogram of the temporal reservoir and then
sampling it using antithetic strategies. Our method benefits from
using multiple candidates, as this approach enables stratification.
However, this comes with additional overhead, comparable to that
of frame candidates histogram.
Table 2 presents an ablation of histogram sampling methods:

Uncorrelated random, Low discrepancy (multiple samples [Heitz
et al. 2019]), Random offset stratification (per frame, then with
temporal coherence using single sample [Heitz et al. 2019]), and
our full method (antithetic per frame + temporal coherent [Heitz
et al. 2019], 1 sample/frame). Evaluated with RelMSE and perceptual
pRelMSE (RelMSE on Gaussian-filtered output to account for blue
noise benefits [Salaün et al. 2022a]). Our full method yields the best
results for both metrics.

5.3 Discussion and future work
The use of block-based histograms for candidate selection can in-
troduce visual artifacts that manifest as block-like patterns in the
raw image, particularly when significant statistical differences ex-
ist between neighboring histograms. Such artifacts diminish as ei-
ther the block size or the number of accumulated frames increases,
smoothing the distribution of samples across the image. Addition-
ally, shifting the block positions between frames can help mitigate
these artifacts by averaging out local variations over time.
A promising direction for future work is evaluating the impact

of the positive correlation between neighboring pixels introduced
by ReSTIR, as they often share similar candidates. While this im-
proves temporal stability, it may negatively affect neural denoisers
used in real-time applications. Understanding the magnitude of
this effect and exploring whether it can be leveraged to further
enhance rendering quality presents an important opportunity for
future research.
Our stratification algorithm, to our understanding, does not in-

troduce bias into the ReSTIR framework. However, the determin-
istic nature of our sampling could affect error distribution with a
fixed sample count, though not as a systematic bias. The synergistic
combination of advanced ReSTIR techniques such as ReSTIR GI
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[Ouyang et al. 2021] or AreaReSTIR [Zhang et al. 2024] and theoret-
ical understanding with state of the art sampling methods presents
a significant and interesting direction for future research.

6 Conclusion
We presented a method to improve candidate selection in ReSTIR by
integrating stratified sampling techniques across frames and within
each frame. Our approach leverages Sobol sequences to guide the
sampling process, using a single sample per pixel at each frame to
drive both candidate generation and resampling. Unlike classical
ReSTIR, which employs streaming reservoir updates, we use direct
inverse CDF sampling for resampling, simplifying the implemen-
tation and reducing estimator error. The introduction of antithetic
sampling further refines candidate selection by generating symmet-
ric patterns that effectively reduce error when sampling candidates.
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Fig. 9. Comparison of the block size evolution. Comparison of rendering results using our method across multiple block sizes, ranging from 4 × 4 to
32 × 32. Smaller block sizes produce visible low-frequency artifacts and result in lower RelMSE, as indicated by the reported values. Conversely, excessively
large block sizes tend to reduce pixel similarity and diminish path reuse quality. In general, a block size of 16 × 16 offers the best trade-off.
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Fig. 10. Comparison with temporal accumulation. Equal time comparison of rendering
using frame accumulation instead of temporal candidate sampling over 8 and 9 frames. The
RelMSE error map and three close-up views are shown for both methods, along with the
RelMSE values and their relative differences to ReSTIR.
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Fig. 11. Comparison with multiple temporal reservoir Ren-
dering comparison across varying temporal reservoir sample
counts. The RelMSE map shows results with 4 temporal reser-
voirs. Close-ups compare outputs with 1, 2, and 4 candidates.
By employing our histogram-stratified sampling method for
temporal candidates, we achieve error reduction over ReSTIR,
independent of the temporal reservoir count.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



10 • Corentin et al.

ReSTIR Ours

3.6e-2 (1x) 3.1e-2 (0.86x)
Frame 8

9.7

0.0

4.1e-2 (1x) 2.7e-2 (0.66x)

2.4e-2 (1x) 1.6e-2 (0.66x)

1.4e-2 (1x) 1.1e-2 (0.78x)
Reference ReSTIR Ours

ReSTIR Ours

7.8e-2 (1x) 6.9e-2 (0.89x)
Frame 16

89.2

0.0

2.7e-2 (1x) 1.8e-2 (0.67x)

3.6e-2 (1x) 2.7e-2 (0.76x)

7.0e-2 (1x) 5.6e-2 (0.79x)
Reference ReSTIR Ours

ReSTIR Ours

1.5e-1 (1x) 1.1e-1 (0.71x)
Frame 32

97.8

0.0

8.7e-2 (1x) 4.5e-2 (0.51x)

1.2e-1 (1x) 6.4e-2 (0.53x)

9.2e-2 (1x) 5.2e-2 (0.56x)
Reference ReSTIR Ours

Fig. 12. Comparison using temporal reservoir. Visual and RelMSE comparisons are shown with equal sample counts for three different scenes, rendered as
the 8th, 16th, and 32nd respectively frames of static scene. The close-up report the RelMSE for the region and its relative difference to ReSTIR. Our method
shows reduced noise levels for both direct illumination using environment maps (top and middle) and for indirectly illuminated scenes (bottom).
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